SML300HB06 #### Attributes: - -aerospace build standard - -high reliability - -lightweight - -metal matrix base plate - -AIN isolation - -trench gate igbts ## **Maximum rated values/ Electrical Properties** | Collector-emitter Voltage | | ce | 600 | V | |------------------------------------|---|-----------------------------|--------------|--------------------| | DC Collector Current | Tc=70C, Tvj=175C
Tc=25C,Tvj=175C | I _c , nom | 300
400 | A | | Repetitive peak Collector Current | tp=1msec,Tc=80 | $I_{ m crm}$ | 600 | A | | Total Power Dissipation | Tc=25€ | ${ m P_{tot}}$ | 1250 | W | | Gate-emitter peak voltage | | V_{ges} | +/-20 | V | | DC Forward Diode
Current | | $ m I_f$ | 300 | A | | Repetitive Peak
Forward Current | tp=\msec | $ m I_{frm}$ | 600 | A | | I ² t value per dioa | Vr=0V, tp=10msec,
Tvj=125C
Tvj=150C | I ² _t | 8400
7900 | A ² sec | | Isolation voltage | RMS, 50Hz, t=1min | V_{isol} | 2500 | V | | Collector-emitter saturation voltage | Ic=300A,Vge=15V, Tc=25C
Ic=300A,Vge=15V,Tc=125C
Ic=300A,Vge=15V,Tc=150C | $V_{\text{ce(sat)}} \\$ | | 1.45
1.6
1.7 | 1.9 | V | |--------------------------------------|---|-------------------------|-----|--------------------|-----|----------| | Gate Threshold voltage | Ic=4.8mA,Vce=Vge, Tvj=25C | Vge _(th) | 4.9 | 5.8 | 6.5 | V | | Input capacitance | f=1MHz,Tvj=25C,Vce=25V,
Vge=0V | C _{ies} | | 19 | | nF | | Reverse transfer Capacitance | f=1MHz,Tvj=25C,Vce=25V,
Vge=0V | C_{res} | | 0.57 | | nF | | Collector emitter cut off current | Vce=600V,Vge=0V,Tvj=25C
Vce=600V,Vge=0V,Tvj=125C | I_{ces} | | 1 | 5 | mA
mA | | Gate emitter cut off current | Vce=0V,Vge=20V,Tvj=25C | I_{ges} | | | 400 | nA | | Turn on delay time | Ic=300A, Vcc=300V
Vge=+/15V,Rg=2.4Ω,Tvj=25C
Vge=+/-15V,Rg=2.4Ω,Tvj=125C
Vge=+/-15V,Rg=2.4Ω,Tvj=150C | $t_{d,on}$ | 110
120
130 | nsec
nsec
nsec | |--------------------------------|--|------------------|-------------------|----------------------| | Rise time | $ \begin{array}{l} Ic=&300A,\ Vcc=&300V\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&25C\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&125C\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&150C \end{array} $ | tr | 50
60
60 | nsec
nsec
nsec | | Turn off delay time | Ic=300A, Vcc=300V
Vge=+/-15V,Rg=2.4Ω,Tvj=25C
Vge=+/-15V,Rg=2.4Ω,Tvj=125C
Vge=+/-15V,Rg=2.4Ω,Tvj=150C | $t_{ m d,off}$ | 490
520
530 | nsec
nsec
nsec | | Fall time | $ \begin{array}{l} Ic=&300A,\ Vcc=&300V\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&25C\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&125C\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&150C \end{array} $ | t_{f} | 50
70
70 | nsec
nsec
nsec | | Turn on energy loss per pulse | Ic=300A,Vce=300V,Vge= -1/ C
Rge=2.4Ω,L=30nH Tvj=1.25C
di/dt=6500A/μsec | E _{on} | 3.1
3.3 | mJ
mJ | | Turn off energy loss per pulse | Ic=300A,Vcc=36 V,Vge=+/-15V
Rge=2.4Ω =3c rH Tvj=105C
di/dt=6500A μ ec Tvi=1:0C | $E_{\rm off}$ | 15
15.5 | mJ
mJ | | SC Data | tp≤1 use Vge≤15V vc =360V, | I_{sc} | 2100
1500 | A
A | | Stray Module inductance | 7 6 | $L_{\sigma ce}$ | 40 | nН | | Terminal-chip roch tan e |) | R _c | 1.2 | mΩ | ### **Diode characteristics** | Forward voltage | Ic=300A,Vge=0V, Tc=25C
Ic=300A,Vge=0V, Tc=125C
Ic=300A,Vge=0V, Tc=150C | V_{f} | 1.55
1.5
1.45 | 1.95 | V
V
V | |-------------------------------|---|------------------|---------------------|------|----------------| | Peak reverse recovery current | If=300A, -di/dt=6500A/µsec
Vce=300V,Vge=-15V,Tvj=25C
Vce=300V,Vge=-15V,Tvj=125C
Vce=300V,Vge=-15V,Tvj=150C | $ m I_{rm}$ | 190
235
250 | | A
A
A | | Recovered charge | If=300A, -di/dt=6500A/μsec
Vce=300V,Vge=-15V,Tvj=25C
Vce=300V,Vge=-15V,Tvj=125C
Vce=300V,Vge=-15V,Tvj=150C | Qr | 13
24
28 | | μC
μC
μC | | Reverse recovery energy | If=300A, -di/dt=6500A/μsec
Vce=300V,Vge=-15V,Tvj=25C
Vce=300V,Vge=-15V,Tvj=125C
Vce=300V,Vge=-15V,Tvj=150C | E _{rec} | 3.4
6.2
7.0 | | mJ
mJ
mJ | | Thermal Properties | | | Min | Typ | Max | | |-------------------------------------|---------------|-------------------------|-----|------|--------------|-----| | Thermal resistance junction to case | Igbt
Diode | $R_{ heta J ext{-}C}$ | | | 0.12
0.16 | K/W | | Thermal resistance case to heatsink | | $R_{\theta C ext{-hs}}$ | | 0.03 | | K/W | | Maximum junction temperature | | Tvj | | | 175 | С | | Maximum operating temperature | | Тор | -55 | | 175 | С | | Storage Temperature | | Tstg | -55 | 4 | 175 | С | # output characteristic IGB%-inverter (typical) Ic = f (Vce) V_{GE} = 15 V # output characteristic IGBT-inverter (typical) Ic = f (V_{CE}) T_{vJ} = 150°C # switching losses IGBT-inverter (typical) $E_{on} = f(I_C)$, $E_{off} = f(I_C)$ $V_{GE} = \pm 15 \text{ V}$, $R_{Gon} = 2,4 \Omega$, $R_{Goff} = 2,4 \Omega$, $V_{CE} = 300 \text{ V}$ switching losses IGB i in verter ("vpi al) $E_{on} = f(R_G)$, $E_{ort} = f(R_G)$ $V_{GE} = \pm 15 \text{ V, } I_G = 3.00 \text{ A, } V_{GL} = 3.00 \text{ V}$ ## IGH PERFORMANCE POWER SEMICONDUCTORS # forward characteristic of diode inverter (typical) #### CIRCUIT DIAGRAM