

SML300HB06

Attributes:

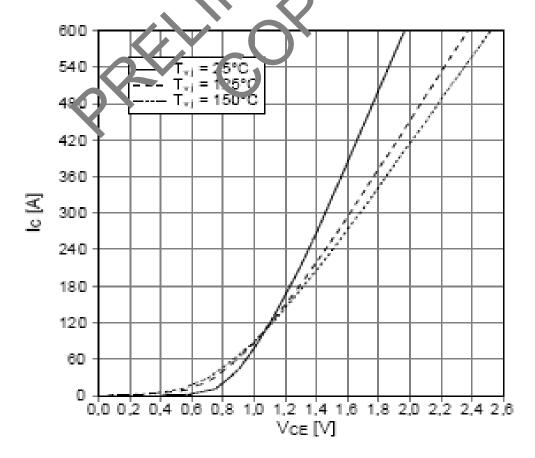
- -aerospace build standard
- -high reliability
- -lightweight
- -metal matrix base plate
- -AIN isolation
- -trench gate igbts

Maximum rated values/ Electrical Properties

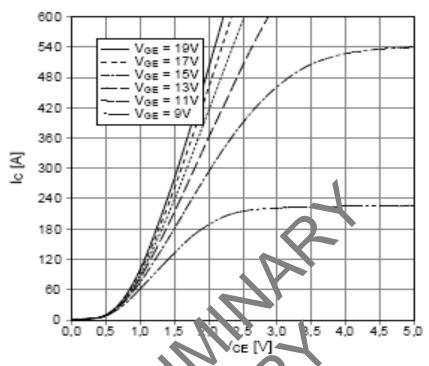
Collector-emitter Voltage		ce	600	V
DC Collector Current	Tc=70C, Tvj=175C Tc=25C,Tvj=175C	I _c , nom	300 400	A
Repetitive peak Collector Current	tp=1msec,Tc=80	$I_{ m crm}$	600	A
Total Power Dissipation	Tc=25€	${ m P_{tot}}$	1250	W
Gate-emitter peak voltage		V_{ges}	+/-20	V
DC Forward Diode Current		$ m I_f$	300	A
Repetitive Peak Forward Current	tp=\msec	$ m I_{frm}$	600	A
I ² t value per dioa	Vr=0V, tp=10msec, Tvj=125C Tvj=150C	I ² _t	8400 7900	A ² sec
Isolation voltage	RMS, 50Hz, t=1min	V_{isol}	2500	V

Collector-emitter saturation voltage	Ic=300A,Vge=15V, Tc=25C Ic=300A,Vge=15V,Tc=125C Ic=300A,Vge=15V,Tc=150C	$V_{\text{ce(sat)}} \\$		1.45 1.6 1.7	1.9	V
Gate Threshold voltage	Ic=4.8mA,Vce=Vge, Tvj=25C	Vge _(th)	4.9	5.8	6.5	V
Input capacitance	f=1MHz,Tvj=25C,Vce=25V, Vge=0V	C _{ies}		19		nF
Reverse transfer Capacitance	f=1MHz,Tvj=25C,Vce=25V, Vge=0V	C_{res}		0.57		nF
Collector emitter cut off current	Vce=600V,Vge=0V,Tvj=25C Vce=600V,Vge=0V,Tvj=125C	I_{ces}		1	5	mA mA
Gate emitter cut off current	Vce=0V,Vge=20V,Tvj=25C	I_{ges}			400	nA

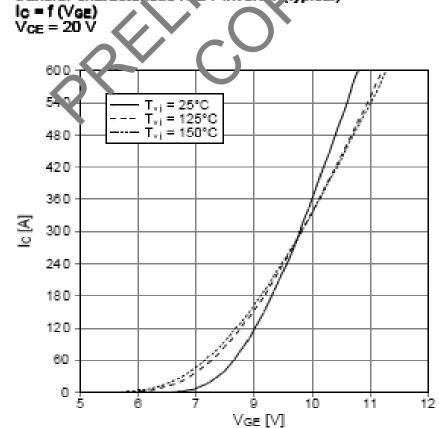
Turn on delay time	Ic=300A, Vcc=300V Vge=+/15V,Rg=2.4Ω,Tvj=25C Vge=+/-15V,Rg=2.4Ω,Tvj=125C Vge=+/-15V,Rg=2.4Ω,Tvj=150C	$t_{d,on}$	110 120 130	nsec nsec nsec
Rise time	$ \begin{array}{l} Ic=&300A,\ Vcc=&300V\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&25C\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&125C\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&150C \end{array} $	tr	50 60 60	nsec nsec nsec
Turn off delay time	Ic=300A, Vcc=300V Vge=+/-15V,Rg=2.4Ω,Tvj=25C Vge=+/-15V,Rg=2.4Ω,Tvj=125C Vge=+/-15V,Rg=2.4Ω,Tvj=150C	$t_{ m d,off}$	490 520 530	nsec nsec nsec
Fall time	$ \begin{array}{l} Ic=&300A,\ Vcc=&300V\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&25C\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&125C\\ Vge=&+/-15V,Rg=&2.4\Omega,Tvj=&150C \end{array} $	t_{f}	50 70 70	nsec nsec nsec
Turn on energy loss per pulse	Ic=300A,Vce=300V,Vge= -1/ C Rge=2.4Ω,L=30nH Tvj=1.25C di/dt=6500A/μsec	E _{on}	3.1 3.3	mJ mJ
Turn off energy loss per pulse	Ic=300A,Vcc=36 V,Vge=+/-15V Rge=2.4Ω =3c rH Tvj=105C di/dt=6500A μ ec Tvi=1:0C	$E_{\rm off}$	15 15.5	mJ mJ
SC Data	tp≤1 use Vge≤15V vc =360V,	I_{sc}	2100 1500	A A
Stray Module inductance	7 6	$L_{\sigma ce}$	40	nН
Terminal-chip roch tan e)	R _c	1.2	mΩ


Diode characteristics

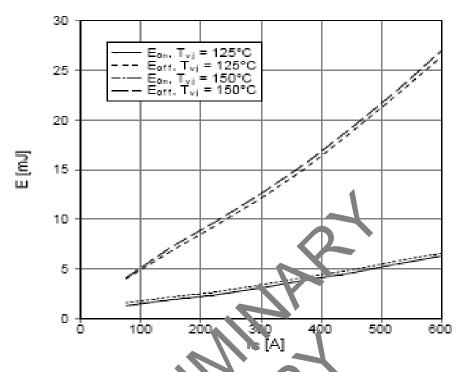
Forward voltage	Ic=300A,Vge=0V, Tc=25C Ic=300A,Vge=0V, Tc=125C Ic=300A,Vge=0V, Tc=150C	V_{f}	1.55 1.5 1.45	1.95	V V V
Peak reverse recovery current	If=300A, -di/dt=6500A/µsec Vce=300V,Vge=-15V,Tvj=25C Vce=300V,Vge=-15V,Tvj=125C Vce=300V,Vge=-15V,Tvj=150C	$ m I_{rm}$	190 235 250		A A A
Recovered charge	If=300A, -di/dt=6500A/μsec Vce=300V,Vge=-15V,Tvj=25C Vce=300V,Vge=-15V,Tvj=125C Vce=300V,Vge=-15V,Tvj=150C	Qr	13 24 28		μC μC μC
Reverse recovery energy	If=300A, -di/dt=6500A/μsec Vce=300V,Vge=-15V,Tvj=25C Vce=300V,Vge=-15V,Tvj=125C Vce=300V,Vge=-15V,Tvj=150C	E _{rec}	3.4 6.2 7.0		mJ mJ mJ

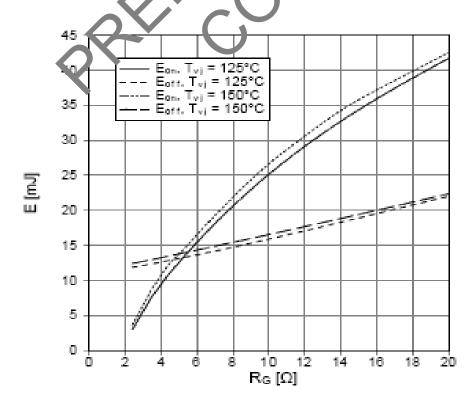

Thermal Properties			Min	Typ	Max	
Thermal resistance junction to case	Igbt Diode	$R_{ heta J ext{-}C}$			0.12 0.16	K/W
Thermal resistance case to heatsink		$R_{\theta C ext{-hs}}$		0.03		K/W
Maximum junction temperature		Tvj			175	С
Maximum operating temperature		Тор	-55		175	С
Storage Temperature		Tstg	-55	4	175	С

output characteristic IGB%-inverter (typical) Ic = f (Vce) V_{GE} = 15 V

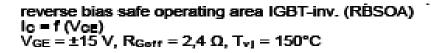


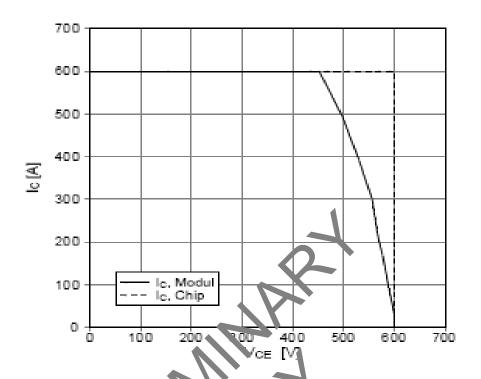
output characteristic IGBT-inverter (typical) Ic = f (V_{CE}) T_{vJ} = 150°C

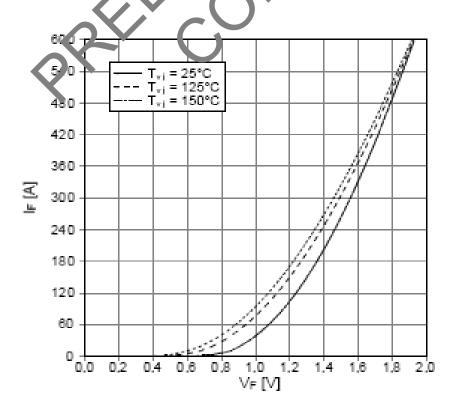


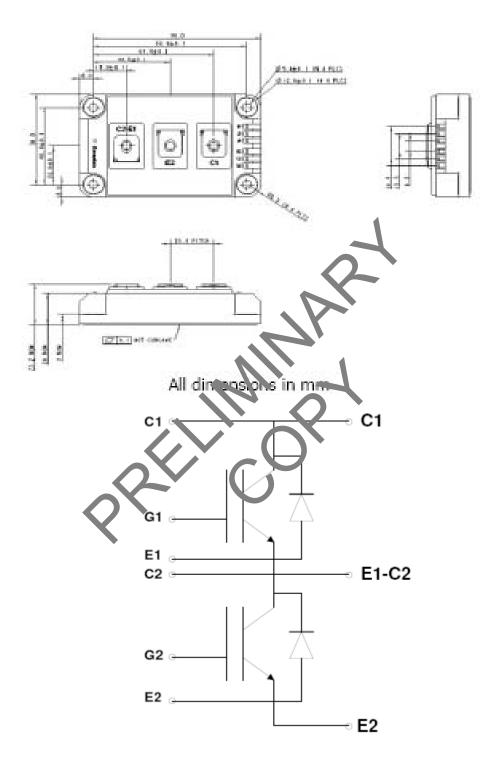


switching losses IGBT-inverter (typical) $E_{on} = f(I_C)$, $E_{off} = f(I_C)$ $V_{GE} = \pm 15 \text{ V}$, $R_{Gon} = 2,4 \Omega$, $R_{Goff} = 2,4 \Omega$, $V_{CE} = 300 \text{ V}$




switching losses IGB i in verter ("vpi al) $E_{on} = f(R_G)$, $E_{ort} = f(R_G)$ $V_{GE} = \pm 15 \text{ V, } I_G = 3.00 \text{ A, } V_{GL} = 3.00 \text{ V}$




IGH PERFORMANCE POWER SEMICONDUCTORS

forward characteristic of diode inverter (typical)

CIRCUIT DIAGRAM